EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

نویسندگان

  • Mengtao Li
  • Guang Lu
  • Jia Hu
  • Xue Shen
  • Jiabao Ju
  • Yuanxu Gao
  • Liujing Qu
  • Yan Xia
  • Yingyu Chen
  • Yun Bai
چکیده

Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy

EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult hea...

متن کامل

The Crucial Role of Atg5 in Cortical Neurogenesis During Early Brain Development

Autophagy plays an important role in the central nervous system. However, it is unknown how autophagy regulates cortical neurogenesis during early brain development. Here, we report that autophagy-related gene 5 (Atg5) expression increased with cortical development and differentiation. The suppression of Atg5 expression by knockdown led to inhibited differentiation and increased proliferation o...

متن کامل

Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis.

Preexisting maternal diabetes increases the risk of neural tube defects (NTDs). The mechanism underlying maternal diabetes-induced NTDs is not totally defined, and its prevention remains a challenge. Autophagy, an intracellular process to degrade dysfunction protein and damaged cellular organelles, regulates cell proliferation, differentiation, and apoptosis. Because autophagy impairment causes...

متن کامل

Apoptosis, Autophagy, and Necrosis in Murine Embryonic Gonadal Ridges and Neonatal Ovaries: An Animal Model

Background: In mammalian ovaries, loss of over two-thirds of germ cells happens due to cell death. Nonetheless, the exact mechanism of cell death has yet to be determined. The present basic practical study was designed to detect 3 types of programmed cell death, namely apoptosis, autophagy, and necrosis, in murine embryonic gonadal ridges and neonatal ovaries.Methods: Twenty gonadal ridges and ...

متن کامل

let-7 regulates radial migration of new-born neurons through positive regulation of autophagy.

During adult neurogenesis, newly formed olfactory bulb (OB) interneurons migrate radially to integrate into specific layers of the OB Despite the importance of this process, the intracellular mechanisms that regulate radial migration remain poorly understood. Here, we find that microRNA (miRNA) let-7 regulates radial migration by modulating autophagy in new-born neurons. Using Argonaute2 immuno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016